Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds
نویسندگان
چکیده
The poor bonding strength between biopolymer and bioceramic has remained an unsolved issue. In this study, graphene oxide (GO) was introduced as an interface phase to improve the interfacial bonding between polyetheretherketone (PEEK) and hydroxyapatite (HAP) for tissue engineering scaffolds. On the one hand, the conjugated structure of GO could form strong π-π stacking interaction with the benzene rings in PEEK. On the other hand, GO with a negatively charge resulting from oxygen functional groups could adsorb the positively charged calcium atoms (C sites) of HAP. Consequently, the dispersibility and compatibility of HAP in the PEEK matrix increased with increasing GO content up to 1 wt%. At this time, the compressive strength and modulus of scaffolds increased by 79.45% and 42.07%, respectively. Furthermore, the PEEK-HAP with GO (PEEK-HAP/GO) scaffolds possessed the ability to induce formation of bone-like apatite. And they could support cellular adhesion, proliferation as well as osteogenic differentiation. More importantly, in vivo bone defect repair experiments showed that new bone formed throughout the scaffolds at 60 days after implantation. All these results suggested that the PEEK-HAP/GO scaffolds have a promising potential for bone tissue engineering application.
منابع مشابه
A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds
A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasi...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملEVALUATION OF ANTIBACTERIAL PROPERTIES OF POLYLACTIC ACID-POLYCAPROLACTONE-CONTAINING HYDROXYAPATITE AND ZINC OXIDE NANOPARTICLES IN HARD TISSUE ABSORBABLE SCAFFOLDS
Today, many people need to use bone grafts and implants because of damage to bone tissue. Due to the stimulation of the immune system after implantation, infection at the operation site is very common, which causes swelling and pain in the operation area. The use of zinc oxide nanoparticles reduces infection at the operation site and reduces the patient's need for antibiotics. In the present st...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملFabrication and Characterization of Polycaprolactone – Zeolite Y Nanocomposite for Bone Tissue Engineering
In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological...
متن کامل